Extensions of Gaussian Processes for Ranking: Semi-supervised and Active Learning
نویسندگان
چکیده
Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.
منابع مشابه
Semi-supervised bipartite ranking with the normalized Rayleigh coefficient
We propose a new algorithm for semi-supervised learning in the bipartite ranking framework. It is based on the maximization of a so-called normalized Rayleigh coefficient, which differs from the usual Rayleigh coefficient of Fisher’s linear discriminant in that the actual covariance matrices are used instead of the scatter matrices. We show that if the class conditional distributions are Gaussi...
متن کاملSemi-supervised learning : from Gaussian fields to Gaussian processes
We show that the Gaussian random fields and harmonic energy minimizing function framework for semi-supervised learning can be viewed in terms of Gaussian processes, with covariance matrices derived from the graph Laplacian. We derive hyperparameter learning with evidence maximization, and give an empirical study of various ways to parameterize the graph weights.
متن کاملGraph-based Semi-Supervised Regression and Its Extensions
In this paper we present a graph-based semisupervised method for solving regression problem. In our method, we first build an adjacent graph on all labeled and unlabeled data, and then incorporate the graph prior with the standard Gaussian process prior to infer the training model and prediction distribution for semi-supervised Gaussian process regression. Additionally, to further boost the lea...
متن کاملSemi-supervised learning with Gaussian fields
Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. This paper presents two contributions. First, we show how the GF framework can be used for regression tasks on high-dimensional data. We consider an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Second, we show h...
متن کاملSemi-supervised Learning via Gaussian Processes
We present a probabilistic approach to learning a Gaussian Process classifier in the presence of unlabeled data. Our approach involves a “null category noise model” (NCNM) inspired by ordered categorical noise models. The noise model reflects an assumption that the data density is lower between the class-conditional densities. We illustrate our approach on a toy problem and present comparative ...
متن کامل